3.308 \(\int \frac{1}{\sqrt{x} (a+b x^2)^3} \, dx\)

Optimal. Leaf size=239 \[ \frac{7 \sqrt{x}}{16 a^2 \left (a+b x^2\right )}-\frac{21 \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{21 \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}-\frac{21 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{21 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{\sqrt{x}}{4 a \left (a+b x^2\right )^2} \]

[Out]

Sqrt[x]/(4*a*(a + b*x^2)^2) + (7*Sqrt[x])/(16*a^2*(a + b*x^2)) - (21*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1
/4)])/(32*Sqrt[2]*a^(11/4)*b^(1/4)) + (21*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(32*Sqrt[2]*a^(11/4)*
b^(1/4)) - (21*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(64*Sqrt[2]*a^(11/4)*b^(1/4)) + (21
*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(64*Sqrt[2]*a^(11/4)*b^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.172223, antiderivative size = 239, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.533, Rules used = {290, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac{7 \sqrt{x}}{16 a^2 \left (a+b x^2\right )}-\frac{21 \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{21 \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}-\frac{21 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{21 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{\sqrt{x}}{4 a \left (a+b x^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*(a + b*x^2)^3),x]

[Out]

Sqrt[x]/(4*a*(a + b*x^2)^2) + (7*Sqrt[x])/(16*a^2*(a + b*x^2)) - (21*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1
/4)])/(32*Sqrt[2]*a^(11/4)*b^(1/4)) + (21*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(32*Sqrt[2]*a^(11/4)*
b^(1/4)) - (21*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(64*Sqrt[2]*a^(11/4)*b^(1/4)) + (21
*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(64*Sqrt[2]*a^(11/4)*b^(1/4))

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{x} \left (a+b x^2\right )^3} \, dx &=\frac{\sqrt{x}}{4 a \left (a+b x^2\right )^2}+\frac{7 \int \frac{1}{\sqrt{x} \left (a+b x^2\right )^2} \, dx}{8 a}\\ &=\frac{\sqrt{x}}{4 a \left (a+b x^2\right )^2}+\frac{7 \sqrt{x}}{16 a^2 \left (a+b x^2\right )}+\frac{21 \int \frac{1}{\sqrt{x} \left (a+b x^2\right )} \, dx}{32 a^2}\\ &=\frac{\sqrt{x}}{4 a \left (a+b x^2\right )^2}+\frac{7 \sqrt{x}}{16 a^2 \left (a+b x^2\right )}+\frac{21 \operatorname{Subst}\left (\int \frac{1}{a+b x^4} \, dx,x,\sqrt{x}\right )}{16 a^2}\\ &=\frac{\sqrt{x}}{4 a \left (a+b x^2\right )^2}+\frac{7 \sqrt{x}}{16 a^2 \left (a+b x^2\right )}+\frac{21 \operatorname{Subst}\left (\int \frac{\sqrt{a}-\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{32 a^{5/2}}+\frac{21 \operatorname{Subst}\left (\int \frac{\sqrt{a}+\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{32 a^{5/2}}\\ &=\frac{\sqrt{x}}{4 a \left (a+b x^2\right )^2}+\frac{7 \sqrt{x}}{16 a^2 \left (a+b x^2\right )}+\frac{21 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{64 a^{5/2} \sqrt{b}}+\frac{21 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{64 a^{5/2} \sqrt{b}}-\frac{21 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}-\frac{21 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}\\ &=\frac{\sqrt{x}}{4 a \left (a+b x^2\right )^2}+\frac{7 \sqrt{x}}{16 a^2 \left (a+b x^2\right )}-\frac{21 \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{21 \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{21 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b}}-\frac{21 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b}}\\ &=\frac{\sqrt{x}}{4 a \left (a+b x^2\right )^2}+\frac{7 \sqrt{x}}{16 a^2 \left (a+b x^2\right )}-\frac{21 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{21 \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b}}-\frac{21 \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}+\frac{21 \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b}}\\ \end{align*}

Mathematica [A]  time = 0.0835067, size = 220, normalized size = 0.92 \[ \frac{\frac{32 a^{7/4} \sqrt{x}}{\left (a+b x^2\right )^2}+\frac{56 a^{3/4} \sqrt{x}}{a+b x^2}-\frac{21 \sqrt{2} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{\sqrt [4]{b}}+\frac{21 \sqrt{2} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{\sqrt [4]{b}}-\frac{42 \sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt [4]{b}}+\frac{42 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt [4]{b}}}{128 a^{11/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*(a + b*x^2)^3),x]

[Out]

((32*a^(7/4)*Sqrt[x])/(a + b*x^2)^2 + (56*a^(3/4)*Sqrt[x])/(a + b*x^2) - (42*Sqrt[2]*ArcTan[1 - (Sqrt[2]*b^(1/
4)*Sqrt[x])/a^(1/4)])/b^(1/4) + (42*Sqrt[2]*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/b^(1/4) - (21*Sqrt[
2]*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/b^(1/4) + (21*Sqrt[2]*Log[Sqrt[a] + Sqrt[2]*a^(
1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/b^(1/4))/(128*a^(11/4))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 166, normalized size = 0.7 \begin{align*}{\frac{1}{4\,a \left ( b{x}^{2}+a \right ) ^{2}}\sqrt{x}}+{\frac{7}{16\,{a}^{2} \left ( b{x}^{2}+a \right ) }\sqrt{x}}+{\frac{21\,\sqrt{2}}{128\,{a}^{3}}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ( x-\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }+{\frac{21\,\sqrt{2}}{64\,{a}^{3}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) }+{\frac{21\,\sqrt{2}}{64\,{a}^{3}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)^3/x^(1/2),x)

[Out]

1/4*x^(1/2)/a/(b*x^2+a)^2+7/16*x^(1/2)/a^2/(b*x^2+a)+21/128/a^3*(1/b*a)^(1/4)*2^(1/2)*ln((x+(1/b*a)^(1/4)*x^(1
/2)*2^(1/2)+(1/b*a)^(1/2))/(x-(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2)))+21/64/a^3*(1/b*a)^(1/4)*2^(1/2)*ar
ctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)+1)+21/64/a^3*(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^3/x^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.4554, size = 576, normalized size = 2.41 \begin{align*} \frac{84 \,{\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )} \left (-\frac{1}{a^{11} b}\right )^{\frac{1}{4}} \arctan \left (\sqrt{a^{6} \sqrt{-\frac{1}{a^{11} b}} + x} a^{8} b \left (-\frac{1}{a^{11} b}\right )^{\frac{3}{4}} - a^{8} b \sqrt{x} \left (-\frac{1}{a^{11} b}\right )^{\frac{3}{4}}\right ) + 21 \,{\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )} \left (-\frac{1}{a^{11} b}\right )^{\frac{1}{4}} \log \left (a^{3} \left (-\frac{1}{a^{11} b}\right )^{\frac{1}{4}} + \sqrt{x}\right ) - 21 \,{\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )} \left (-\frac{1}{a^{11} b}\right )^{\frac{1}{4}} \log \left (-a^{3} \left (-\frac{1}{a^{11} b}\right )^{\frac{1}{4}} + \sqrt{x}\right ) + 4 \,{\left (7 \, b x^{2} + 11 \, a\right )} \sqrt{x}}{64 \,{\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^3/x^(1/2),x, algorithm="fricas")

[Out]

1/64*(84*(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4)*(-1/(a^11*b))^(1/4)*arctan(sqrt(a^6*sqrt(-1/(a^11*b)) + x)*a^8*b*(-
1/(a^11*b))^(3/4) - a^8*b*sqrt(x)*(-1/(a^11*b))^(3/4)) + 21*(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4)*(-1/(a^11*b))^(1
/4)*log(a^3*(-1/(a^11*b))^(1/4) + sqrt(x)) - 21*(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4)*(-1/(a^11*b))^(1/4)*log(-a^3
*(-1/(a^11*b))^(1/4) + sqrt(x)) + 4*(7*b*x^2 + 11*a)*sqrt(x))/(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)**3/x**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.45155, size = 282, normalized size = 1.18 \begin{align*} \frac{21 \, \sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{64 \, a^{3} b} + \frac{21 \, \sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{64 \, a^{3} b} + \frac{21 \, \sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \log \left (\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{128 \, a^{3} b} - \frac{21 \, \sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{128 \, a^{3} b} + \frac{7 \, b x^{\frac{5}{2}} + 11 \, a \sqrt{x}}{16 \,{\left (b x^{2} + a\right )}^{2} a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^3/x^(1/2),x, algorithm="giac")

[Out]

21/64*sqrt(2)*(a*b^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a^3*b) + 21/64*
sqrt(2)*(a*b^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a^3*b) + 21/128*sqrt
(2)*(a*b^3)^(1/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^3*b) - 21/128*sqrt(2)*(a*b^3)^(1/4)*log(
-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^3*b) + 1/16*(7*b*x^(5/2) + 11*a*sqrt(x))/((b*x^2 + a)^2*a^2)